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Dynamical quantum chaos as fluid turbulence
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A quantum particle subject to a time-dependent force appears as if it were a collisionless turbulent fluid with
a tensorial pressure given by a known equation of state. Such a fluid may possess topological singularities such
as line vortices and sheet vortices, which are frozen in the fluid. Creation and destruction of these vortices are
only possible when the forcing potential is singular. In addition, when the initial data are of large scale, the
quantum fluctuations have a tendency to become steepened, characteristic of the classical compressible fluid in
forming shock waves, and the nonlinear steepening is halted by the wave dispersion in generating an abun-
dance of short waves. Chaotic quantum dynamics is expected to be governed by the interplay between wave
steepening and vortex interactions.@S1063-651X~98!05702-X#

PACS number~s!: 47.15.Ki, 47.15.Hg, 67.20.1k
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I. INTRODUCTION

Quantum mechanics~QM! has long been thought to be
matured methodology for investigating atomic energy leve
through which transitions between different levels can
theoretically computed. Since the energies of the emi
photons are experimentally detectable at high precision,
agreement between theories and experiments is often tho
to verify QM.

The domain of applications for quantum mechanics of t
type is in fact rather restricted from the dynamical viewpoi
The fact that atoms have different energy levels only in
cates that they can be at different eigenstates or, from
dynamical perspective, different stationary states. It is c
ceivable that the time-dependent Schro¨dinger equation can
admit a much wider domain of solutions than the mere s
tionary eigenstates. Specifically, when the system is sub
to ~external! time-dependent forces, the stationary states
no longer exist. In classical mechanics, this situation is of
nonintegrable if the forces are nonlinear, and the system
hibits chaos. The quantum-mechanical counterpart of
time-dependent, nonintegrable Hamiltonian is expected
exhibit peculiar behaviors, which we shall call the dynami
quantum chaos to differentiate it from the other type of qu
tum chaos where the Hamiltonian is time independent
nonintegrable. For the latter, the energy levels still ex
@1,2#, but for the former, energy levels have no meaning a
one is to understand such a system only through invest
tions of the evolving wave functions@3#.

In fact, systems with time-dependent Hamiltonians are
unfamiliar. However, in the standard treatments, one usu
considers the situations where the time-dependent forc
either a short pulse or adiabatic. In both cases, dynam
quantum chaos can hardly occur, due either to having
sufficient time for the system to respond or to the existe
of an adiabatically invariant action. The true dynamic
quantum chaos can occur when the time scale of the exte
force is comparable to\/E, whereE is the typical energy
scale of the system. For a slowly varying external force, t
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situation can only occur at the transition from a free parti
to a trapped particle in the presence of a potential well, i
the resonant interactions. In this paper, a fluid description
such dynamical quantum chaos will be given. This appro
makes extensive use of the analogy of a quantum particl
the classical fluid. Coupling of the quantum particle to rad
tion in the time-dependent potential, which yields ener
loss, is not accounted for in this work. Hence only dissip
tionless quantum chaos is considered. A conceivable
ample for such a system can be a quantum particle exp
encing a rapidly varying gravitational field.

A quantum system subject to a time-dependent poten
rarely has been analyzed in the literature partly becaus
the complexity associated with it. However, with the pres
fluid approach, it is possible to understand the important
namical features, such as topological singularities, of
chaotic quantum system from its analogy to the bett
understood classical fluid. In this regard, the fluid descript
of QM can be superior to the Schro¨dinger representation
However, the formulation of the conventional Schro¨dinger
equation also has its own great merits. In particular,
Schrödinger equation is a linear equation, in contrast to
nonlinear fluid equations. A seemingly turbulent quantu
fluid described by the fluid equations can actually be deco
posed into many dynamically independent modes when
Schrödinger representation is used. Thus the complica
nonlinearities in the fluid equations turn out to be the no
linear mixtures of these linear modes. From a mathemat
perspective, it has long been suspected that the fluid tu
lence may possess certain underlying hidden integrals
permit turbulence to exhibit intermittency@4–6# and coher-
ent structures@7#. In this regard, the Schro¨dinger representa
tion of QM already has offered a successful example t
uncovers the hidden symmetry~or integrability! inherent to
the nonlinear quantum fluid. It is therefore the dual purpo
of this work on the one hand, to utilize the fluid represen
tion for extracting information about the dynamics of qua
tum chaos and, on the other hand, to bring about how
Schrödinger representation leads to uncovering the hidd
symmetry in the turbulent quantum fluid.

Section II derives a complete set of fluid equations,
cluding the equation of state, from the Schro¨dinger equation;
4150 © 1998 The American Physical Society
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57 4151DYNAMICAL QUANTUM CHAOS AS FLUID TURBULENCE
they can be used to evolve the quantum fluids. Section
focuses on various dynamical properties of the singular v
tices. Dynamical quantum chaos engages not only inte
tions of singular vortices but also nonlinear steepening
compressional fluctuations. These issues are addresse
Sec. IV. A discussion is given in Sec. V.

II. CONSERVATION EQUATIONS OF MASS,
MOMENTUM, AND ENERGY

The quantum dynamics of a single particle is governed
the local conservation laws of energy and momentum. M
like the classical fluids, these conservation laws must also
constrained by the conservation of mass. The Schro¨dinger
equation reads

F i\
]

]t
1

\2¹2

2
2f~x,t !Gc50, ~1!

wheref is the potential of the external force and the parti
mass has been set to unity. The conservation of mass, o
continuity equation, is obtained by multiplyingc* by Eq.~1!
and keeping only the imaginary part. This yields

]r

]t
1“•~rv!50, ~2!

where we have decomposed the wave function into a
phaseS and real amplitudef , with r[ f 2; in addition, we
have setc[ f eiS/\ and v[“S. Equation~2! warrants that
the quantity*r d3x always remains a constant during th
dynamical evolution. This quantity is defined to be unity
order forr to be interpreted as the probability density of t
particle.

The real part of the above operation yields

2
]S

]t
52

\2¹2f

2 f
1

~“S!2

2
1f. ~3!

Derivations for Eqs.~2! and~3! are well known and are often
given in any standard textbook of quantum mechanics. H
ever, less well known is that Eq.~3! is familiar in fluid me-
chanics, known as the Bernoulli equation, except for the
ference where the enthalpyH(r)[*(dP/r) for classical
fluids is now replaced by the quantum enthalpy, the first te
on the right-hand side, for quantum ‘‘fluids.’’ In the classic
fluids, the pressure of an isentropic fluid is a function
densityP5P(r) and an alternative form of the equation
stateH5H(r) for classical fluids has a quantum counterp
Hq[2\2(¹2Ar)/2Ar. The quantum enthalpyHq stems
from the quantum fluctuations of the quantum particle
contrast to the thermal fluctuations of a collection of class
particles.

The momentum equation can be easily derived from
~3! by taking a gradient on both sides of it to obtain

rS ]v

]t
1v•“vD5r“S \2¹2f

2 f D2r“f. ~4!
II
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Note that the pressure force for the quantum fluid satis
2“P5r“(\2¹2f /2 f ). To write the pressure force in
conserved form, one finds that the quantum pressure i
fact not a scalar but a tensor:

Pi j 5\2F ~] i f !~] j f !2
¹2r

4
d i j G . ~5!

Tensorial stress is a common feature for the classical c
sionless fluid and hence the quantum fluid for a single qu
tum particle is closely analogous to a classical collisionl
fluid.

To make a further analogy to fluid mechanics, one m
construct the evolution equation for energy by taking t
innerproduct of Eq.~4! with v. For notational simplicity, we
setw[\“ ln(f ) and it follows that

]

]t Fr2 ~v21w212f!G1“•S r

2
@v~v22w21f!1v•~2ww!

1~“•v!w2~“•w!v# D5rS ]f

]t D , ~6!

whererw2/2 is the internal energy of the quantum fluid an
the second term on the left-hand side is a tensorial ene
flux. With the help of Eqs.~2! and ~5!, Eq. ~4! and ~6! may
be turned into the conservation of momentum and ene
ordinarily described by]Tab /]xb52r]f/]xa in the non-
relativistic limit, whereTab is the energy-momentum tenso
and the indicesa andb run from 0 to 3 in the Minkowsky
metrics. Without the continuity equation, these equatio
themselves may fully evolve the quantum particle as if
were a classical fluid. Alternatively, one may choose Eqs.~2!
and ~4! to evolve the quantum fluid.

III. GENERATION OF VORTICES

In the following discussion, we will show that new vort
ces in the quantum fluids arenot allowed to be generated o
destroyed when the external potentialf is a smooth and
regular function of space. Only when the external poten
becomes singular or a multivalued function of space may
vortices possibly be generated or destroyed in quantum
ids.

From Eq.~4! it is clear that the quantum ‘‘flow’’ can only
be a potential flow, unless“3“SÞ0, which holds only
whenS is a multivalued function of space. When this is soS
must have branch lines@8# and other singularities. Familia
examples of a multivaluedS can be found for the stationar
bound states with finite angular momenta. In these cases
wave function can be expressed as

c5 f ~r ,u!einx, ~7!

where r is the distance to the force center,u the poloidal
angle,x the toroidal angle, andn an integer. In this example
the phaseS/\5nx. Since x is a multivalued function,S
must also be a multivalued function and the branch line
located atu50. The construct of QM is such that at th
singularity the probability density vanishes,r50, so as to
suppress the contribution of this singularity to the probabi
of finding a quantum particle in this state@8#. For example, if
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4152 57TZIHONG CHIUEH
the density vanishes asf ;r , Eq. ~3! yields that ¹2f / f
;r 22, wherer refers to the radius in the cylindrical coord
nate. If all terms in Eq.~3! are comparable, it follows tha
v;r 21, corresponding to a singular line of finite angul
momentum, i.e., a vortex line. A special case for the l
vortex is the ring vortex of zero size, corresponding a po
vortex. Both the line vortex and point vortex have finite e
ergies associated with them@cf. Eq. ~6! for the definition of
energy density# and therefore excitation of these objects
not forbidable from the energetic viewpoint.

In addition, there can be surface singularities: sheet v
tices. They occur when the velocity is expressed, for
ample, as (]S/]x)1 i (]S/]y)5@j(12j)#21/2, where j
([x1 iy) is a complex coordinate and henceS is a nonana-
lytical function of space. The total angular momentum in t
sheet vortex is quantized in units of\ to ensure a single
valued wave functionc away from the vortex sheet. In thi
complex plane, a branch line must exist, running betweej
50 and 1 and defining a vortex sheet in the (x,y,z) space.
Although the trajectory of the branch line in the compl
plane can be arbitrary according to the above expression
the velocity, it is in fact defined by a line~or surface in three
dimensions! of density void. The reason for associating
density void with a sheet vortex is the same as that for
line vortex@8#. One may also understand this requirement
examining the quantum pressure given in Eq.~5!; only when
the density vanishes can the pressure be finite at the vo
sheet. This is a singular line connecting the branch poinj
50 and 1. The density profile near the sheet vortex can
f 5uyu@11c(x)y2#, wherey is the direction perpendicular t
the branch line andc(x) must be adjusted so as to mat
satisfy Eq.~3!. The sheet vortex also contains a finite ener
and it is a much less singular object than the line vortex

The equation of motion for the singular vortices can
obtained by taking a curl on Eq.~4! after dividing both sides
by r. The resulting equation becomes

S ]

]t
1v•“ D S v

r D2S v

r D •“v5
2“3“f

r
50, ~8!

wherev[“3“S. This equation simply describes conse
vation of angular momentum in the fluid. The evolution
fluids described by Eqs.~2!, ~4!, and~6! contains no dissipa
tion and hence the system is an ideal fluid. For a class
ideal fluid, one often questions whether the fluid can deve
vortex singularities within a finite time from an initially
smooth data ofr andv @9#. According to the frozen-in con
dition of vortices @Eq. ~8!#, it appears that no new vorte
could be generated.

What happens when a pair of vortices of opposite si
are created at the same site and break up afterward?
situation is only possible when a quantum fluid, initially co
taining no density void, generates a pair of singular den
voids at the same location. Development of a singular d
sity void requires the existence of a singular~external! force
core, which expels the fluid from the core. Hence creation
paired vortices requires the appearance of a pair of coale
singular potential barriers, which later move apart from ea
other. On the other hand, when the forcing potential is
erywhere smooth and regular, then creation or destructio
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vortices will become impossible. These vortex-generat
singular potentials include those that are multivalued fu
tions of space.

A rotating potential is an example of the multivalue
function of space, for which“3“f50 over an extended
region; it exerts a torque on the fluid, thereby generat
vorticity. In this case, the right-hand side of Eq.~8! survives
and smooth vorticity can therefore be generated in the qu
tum fluid. The effects of a rotating potential are the same
those of a magnetic field. In the presence of a magnetic fi
the fluid velocity consists of a part that is irrotational a
another that is rotational and proportional to the vector
tential. These smooth vorticity distributions must coales
into singular vortices after the rotating potential is turned o

Finally, we remark further on the conventionally undere
plored sheet vortices. A stationary sheet vortex descri
above theoretically can be constructed in a quantum sys
containing an infinitely thin plate of finite size located in
region detached from the boundaries. The presence of
impenetrable plate yields a vanishing density at the pla
and if circulation takes place around the plate, the plate w
be a natural site to house the sheet vortex. The strength o
local vorticity is not constant along the sheet; however,
circulation around the sheet must still be quantized. Once
thin plate is removed and the system becomes force-free
vortex sheet will no longer be stationary. Although the sh
vortex can be decomposed into many independent pla
wave solutions in a force-free system, the sheet must rem
intact in accordance with Eq.~8!. The survival of the shee
vortex arises primarily from the strong initial correlation
among the plane-wave solutions, which do not disperse
lead to the subsequent phase lock in the dynamics. This
pect of the dynamics can only be revealed in the framew
of the fluid formulation and can hardly be detected direc
from the Schro¨dinger formulation.

IV. GENERIC PICTURE OF TIME-DEPENDENT
QUANTUM CHAOS

It is instructive to question how the vortex lines or she
behave when they collide under the condition that the forc
potential remains smooth and regular. Since the fluid e
ments cannot overlap as a result of conservation of mas
the two singular vortices cross each other, the angular
mentum for the fluid elements at the crossing will have
change. This will violate the frozen-in condition of vortice
and hence such a process is not permissible. It thus foll
that the vortices must rebound upon collision. The thr
dimensional topological characteristics of the vortex lin
such as links and knots@10–13# given by the initial condi-
tion, must therefore always persist as long as the froze
condition is respected. Likewise, the three-dimensional
pology of vortex sheets, such as toroidal twists, must per
over the evolution. Interactions for singular vortices d
scribed above represent important dynamical features
quantum chaos.

Despite the inability of the quantum fluid to generate n
singularities if no singular forcing potential is present, t
quantum fluid does, however, have the tendency to deve
sharp boundaries with large velocity gradients. This is d
primarily to the nonlinear steepening effects of Eq.~2!. Sup-
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pose that the initial velocity and density are both smooth
vary on the spatial scaleL; in addition, the time-dependen
external forces are also of scaleL. Defining R
[(u“Su)L/\, we may consider the regime whereR@1. In
this regime, the ‘‘pressure’’ force, the first term on the righ
hand side of Eq.~4!, is much smaller than the inertial force
the second term on the left. It immediately becomes obvi
that Eq.~4! is identical to the Euler equation of ideal class
cal fluids in the limit of zero pressure. An ideal classical flu
without pressure is bound to steepen rapidly at the lead
edges of disturbances to form surface discontinuities@14#.
The nonlinear steepening has been understood to be ca
by the fluid elements of higher velocities tending to r
faster and catch up with the slower fluid elements origina
located in front of them. This interpretation also holds for t
quantum fluids. Indeed, the short-wavelength matter wa
have higher speeds and run faster than the long-wavele
waves, and naturally the wave steepening arises.

In reality, such steepening in classical fluids is stalled
the small viscosity in yielding shock waves; similarly, wa
steepening in quantum fluids can also be halted by the d
pationless quantum fluctuations. The dissipationless quan
fluctuations give rise to wave dispersion, which serves
counteract the wave steepening in the same way as dis
tion does for classical fluids. In fact, a dispersive class
fluid, such as the shallow-water wave, can also avoid
shock formation by converting the flow of kinetic energ
into solitons or solitary wave trains. The quantum fluids lik
wise permit solitary wave trains excited by the steepening
large-scale flows. This will be shown below. To make a fin
connection between the classical and quantum fluids,
quantity R defined above may be regarded as the Reyno
number in the classical fluids in this context.

To illustrate the solitary wave solutions, Eqs.~2! and ~3!
can be rearranged to become

]u1

]t
1u1•“u11

\

2
¹2u252“f, ~9!

]u2

]t
1u2•“u22

\

2
¹2u152“f, ~10!

whereu6[v6w. For a force-free, static solution wheref
50 andv50, the two equations coincide and become t
stationary Burger equation

w•“w2
\

2
¹2w50. ~11!

In one dimension, the Burger equation is known to cont
soliton solutions, which satisfy

dw

dx
5

\

2
~w22C!, ~12!

where C is an integration constant; the solution is a ki
solitonw5AC tanh(2x/\) whenC is positive. However, this
kink solution cannot be a physical solution sincew
}d@ ln(r)#/dx and this kink solution yields an infinite densit
d
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at uxu→`. Another possible solution can be obtained fro
Eq. ~12! by using the variablef , and Eq.~12! is re-expressed
as

1

f

d2f

d2x
52

C

2\2 . ~13!

When C,0, f 5cos(ACx/2\), recovering the linear
standing-wave solution of the Schro¨dinger equation. Thus
the nonlinear steepening in quantum fluids is halted by
wave dispersion that converts the available flow of kine
energy into the internal energy, with the generation of
abundance of short waves. HereC is approximately the
large-scale flow of kinetic energy.

Thus the second important aspect of the chaotic quan
dynamics can be pictured as follows. Large-scale fluct
tions are injected into the system by the large-scale for
and eventually develop sharp boundaries of large gradi
through nonlinear steepening. Engulfed within the sh
boundaries is an abundance of short waves. Collisi
among these boundaries are possible, yielding even m
chaotic structures. In classical fluids, collisions of sho
waves are the effective mechanisms for generating array
line vortices in the postshock regions@14#. However, in
quantum fluids, the singular vortices cannot be so genera

V. DISCUSSION

The present formulation for quantum mechanics as
initial-value problem provides a useful perspective to vie
chaotic quantum dynamics. In particular, the constraints
the evolution of singular vortices can clearly reveal the
selves through the nonlinear equation describing the con
vation of angular momentum. This aspect of quantum
namics may indeed be difficult to detect when the line
superposition of evolving plane-wave solutions is adop
for analysis. On the other hand, this fluid formulation, wh
closely compared with the Schro¨dinger formulation, provides
a suggestion regarding how the long-sought hidden integ
in fluid turbulence can be constructed.

In the absence of a time-dependent potential, Eqs.~2!, ~4!,
and~6! resemble the Navier-Stokes equations of the class
fluids. It is well known that the solutions to the Navie
Stokes equations are notoriously complicated in the reg
of fully developped turbulence. Likewise, when the initi
data of the quantum fluid is sufficiently complicated, co
taining permissible~finite L2 measure! singularities of all
sorts, the solution at any later time must also appear com
cated and one would have concluded that such a quan
fluid is turbulent. Yet this quantum system is in fact int
grable using the Schro¨dinger formulation. In this regard, on
may attribute the integrability of the quantum fluid equatio
~2!, ~4!, and ~6! to some kind of hidden symmetry, whic
disguises itself behind the deceptive complexity of the n
linear fluid equations. Without anya priori knowledge about
the relation of this set of nonlinear fluid equations to t
linear Schro¨dinger equation, it is inconceivable that one
able detect this hidden symmetry, which only reveals its
by a proper combination of the variablesv andr to form the
wave functionc.

With this observation, one may turn the problem arou
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and ask whether the Navier-Stokes equation may also
tain any similar hidden symmetry that leads to certain
grees of integrability in yielding the intermittency@4–6# and
coherent structures@7# often observed in fluid turbulence
The expectation is also reinforced by the fact that fluid t
bulence may proceed without external forces. In this se
the classical fluids may share similar symmetries with
quantum fluids in the absence of external forces. At
present time, there is no systematic way to detect hid
symmetries, if any, in three-dimensional Navier-Stokes s
tems. A possible way to seek symmetries may be base
the Lagrangian of the Navier-Stokes equation@14#. However,
inspired by the similarity between the quantum particles a
classical fluids, one may perhaps gain penetrating insig
for fluid turbulence if deeper connections between the fl
formulation of QM and the Schro¨dinger equation are wel
understood.

In sum, we have presented an unconventional perspec
of the dissipationless chaotic quantum dynamics for a qu
tum particle subject to a time-dependent force. This persp
tive of the quantum dynamics makes an extensive analog
a classical ideal fluid, where the quantum fluctuations repl
the thermal fluctuations. The quantum fluctuations, resul
in wave dispersion, can play a similar role to the fluid v
cosity in stopping the formation of surface discontinuiti
resulting from nonlinear wave steepening. Furthermore,
singular vortices in quantum fluids cannot be created or
stroyed if the potential is a smooth function of space. Ho
ever, once initially given, these vortices must evolve in
specific way without changing their topological character
tics. The chaotic quantum dynamics is therefore expecte
be chiefly governed by the interplay between wave steep
ing and vortex interactions.

Dynamics of line vortices in three dimensions has bee
r,
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subject under intense investigations in recent years@15,16#.
The possible potential applications of this subject area fo
on the high-Tc superconductivity.

Finally, we shall comment on how one may proceed
numerically investigate the dynamical quantum chaos wit
the fluid framework. One may first single out the vortex s
gularity, which is located where the densityr50. One then
use the Biot-Savart law to calculate the incompressible p
of the potential flow. The compressional component of
potential flow is governed by an equation that results fr
taking a Laplacian of the Bernoulli equation~3!. In this step,
one must replace (“S)2 by v2 to distinguish the compres
sional and incompressional velocity components. The d
sity evolves according to the continuity equation~2! as usual.
Finally, the singular vortices obey Eq.~8!, which is nothing
more than the conservation of circulation per unit mass.
the case of line vortices, the strength of circulation associa
with each line is quantized and hence one may simply tr
of the locations of the frozen lines@17# or trace the locations
of density voids. In the case of sheet vortices, the situa
can be more complex. Since the local vorticity on the shee
not necessarily uniform, one not only needs to trace the
cation of the vortex sheet but also records the change
vorticity distribution on the sheet. Nonetheless, one m
handle this complication by considering the vortex shee
be composed of an array of many vortex lines of giv
strengths; the frozen lines can be evolved independently
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